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Abstract. Let X be a set of multicolored points in the plane such that
no three points are collinear and each color appears on at most ⌈|X|/2⌉
points. We show the existence of a non-crossing properly colored ge-
ometric perfect matching on X (if |X| is even), and the existence of
a non-crossing properly colored geometric spanning tree with maximum
degree at most 3 on X. Moreover, we show the existence of a non-crossing
properly colored geometric perfect matching in the plane lattice. In order
to prove these our results, we propose an useful lemma that gives a good
partition of a sequence of multicolored points.
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1 Introduction

Various topics on a set of red and blue points in the plane have been studied
[3]. In this paper, we consider some problems for more colors. Given a set X of
multicolored points in the plane, we want to draw a graph in the plane so that the
vertex set is X and each edge is a straight-line segment whose two end-vertices
have distinct colors. We call such a graph a properly colored geometric graph on
X, which is also called an alternating geometric graph if X is a 2-colored point
set. For alternating geometric perfect matchings on a 2-colored point set, the
next theorem is well-known.

Theorem 1.1 ([5]). Let R and B be sets of red and blue points in the plane,
respectively. Assume that no three points of R ∪ B are collinear. If |R| = |B|,
then there exists a non-crossing alternating geometric perfect matching on R∪B.
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In this paper, we first generalize this Theorem 1.1 for a 3-colored point set,
stated as Theorem 1.2 (Fig. 1). Note that Theorem 1.1 is a special case of
Theorem 1.2 with G = ∅.

Theorem 1.2. Let R, B, G be sets of red, blue, and green points in the plane,
respectively. Assume that no three points of X = R ∪ B ∪ G are collinear. If
|X| is even and each color appears on at most |X|/2 points, then there exists a
non-crossing properly colored geometric perfect matching on X.

Fig. 1. A non-crossing properly colored geometric perfect matching.

Next, we consider a tree of maximum degree at most 3, which is called a
3-tree. Kaneko [2] proved the following theorem.

Theorem 1.3 (Kaneko [2]). Let R and B be sets of red and blue points in
the plane, respectively. Assume that no three points of R ∪ B are collinear. If
|R| = |B|, then there exists a non-crossing alternating geometric spanning 3-tree
on R ∪B.

Our second result is a generalization of this Theorem 1.3 for a 3-colored point
set, stated as Theorem 1.4 (Fig. 2).

Theorem 1.4. Let R, B, G be sets of red, blue, and green points in the plane,
respectively. Assume that no three points of X = R ∪ B ∪ G are collinear. If
each color appears on at most ⌈|X|/2⌉ points, then there exists a non-crossing
properly colored geometric spanning 3-tree on X.

Fig. 2. A non-crossing properly colored geometric spanning 3-tree.

If |X| is even, then we can obtain this Theorem 1.4 as a corollary from our
Theorem 1.2 and the following theorem by Hoffmann and Tóth [1].



Theorem 1.5 (Hoffmann and Tóth [1]). Every disconnected properly colored
geometric graph with no isolated vertices can be augmented (by adding edges) into
a connected properly colored geometric graph so that the degree of every vertex
increases by at most two.

By our Theorem 1.2, there exists a non-crossing properly colored geometric
perfect matching M on X. By applying Theorem 1.5 to M , we can augment M
into a non-crossing properly colored geometric spanning 3-tree on X. Note that
if |X| is odd, then a maximum matching M on X is not a perfect matching (one
isolated vertex remains), so we cannot apply Theorem 1.5 to M . In Section 4,
we present another proof of Theorem 1.4 for both even and odd |X|.

We can also consider problems on red and blue points in the plane lattice
by using L-line segments instead of line segments, where an L-line segment in
the plane lattice consists of a vertical line segment and a horizontal line segment
having a common endpoint. Kano et al.[4] proved the following theorem.

Theorem 1.6 (Kano, Suzuki [4]). Let R and B be sets of red and blue points
in the plane lattice, respectively. Assume that every vertical line and horizontal
line passes through at most one point of the points. If |R| = |B|, then there exists
a non-crossing alternating geometric perfect matching on R ∪ B such that each
edge is an L-line segment.

Our third result is a generalization of this Theorem 1.6 for a 3-colored point
set, stated as Theorem 1.7 (Fig. 3).

Theorem 1.7. Let R, B, G be sets of red, blue, and green points in the plane
lattice, respectively. Assume that every vertical line and horizontal line passes
through at most one point of X = R ∪ B ∪ G. If |X| is even and each color
appears on at most |X|/2 points, then there exists a non-crossing properly colored
geometric perfect matching on X such that each edge is an L-line segment.

Fig. 3. A non-crossing properly colored geometric perfect matching with L-line seg-
ments.

In order to prove our results, we propose the following lemma (Fig. 4).

Lemma 1.8. Let (x1, x2, . . . , xn) be a sequence of n ≥ 3 points colored with 3
colors, say red, blue, and green. Let R, B, G be sets of red, blue, and green points



in the sequence, respectively. Assume that the both ends x1 and xn have the same
color. If each color appears on at most ⌈n/2⌉ points, then there exists an even
number p (2 ≤ p ≤ n− 1) such that xp and x1 have distinct colors and for every
C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤
p

2
,

|C ∩ {xp+1, . . . , xn}| ≤
⌈
n− p

2

⌉
.

x1 xp xn

Fig. 4. Example of Lemma 1.8.

This lemma gives a balanced partition of a 3-colored sequence, in the sense
that every color appears on at most half of the points in each part of the partition.
In our inductive proofs, this lemma is useful in some cases where some “ends”
have the same color. We expect applications of the Lemma to problems where
each color appears on at most half of points.

We can more generalize above our results for a multicolored point set with
2, 3 or more colors, by using the following lemma.

Lemma 1.9. Let NX = {n1, n2, . . . , nr} (r ≥ 4) be a set of positive integers.
Set n = n1 + n2 + · · ·+ nr. If each integer ni is at most ⌈n/2⌉ then there exists
a tripartition NX = NR ∪NB ∪NG such that∑

k∈NR

k ≤
⌈n
2

⌉
,

∑
k∈NB

k ≤
⌈n
2

⌉
,

∑
k∈NG

k ≤
⌈n
2

⌉
.

Proof. We may assume that n1 ≤ n2 ≤ · · · ≤ nr. Then n1 ≤ ⌊n/r⌋ ≤ ⌊n/4⌋ <
⌊n/2⌋ since r ≥ 4 and n ≥ 4. Thus, for some integer nj , n1+n2+· · ·+nj < ⌊n/2⌋
and n1 + n2 + · · · + nj + nj+1 ≥ ⌊n/2⌋. Then, nj+2 + nj+3 + · · · + nr = n −
(n1 + n2 + · · · + nj + nj+1) ≤ n − ⌊n/2⌋ = ⌈n/2⌉. Note that 1 ≤ j ≤ r − 2
because if j = r − 1 then nr = n − (n1 + · · · + nj) > n − ⌊n/2⌋ = ⌈n/2⌉.
Hence, we have the desired tripartition NR = {n1, . . . , nj}, NB = {nj+1}, and
NG = {nj+2, . . . , nr}. ⊓⊔

By using this Lemma 1.9 where let ni be the number of points of color i, we
can obtain the following results for multicolored points from Theorem 1.2, 1.4,
1.7, and Lemma 1.8.



Corollary 1.10. Let X be a set of multicolored points in the plane such that
no three points are collinear. If |X| is even and each color appears on at most
|X|/2 points, then there exists a non-crossing properly colored geometric perfect
matching on X.

Corollary 1.11. Let X be a set of multicolored points in the plane such that no
three points are collinear. If each color appears on at most ⌈|X|/2⌉ points, then
there exists a non-crossing properly colored geometric spanning 3-trees on X.

Corollary 1.12. Let X be a set of multicolored points in the plane lattice. As-
sume that every vertical line and horizontal line passes through at most one point
of X. If |X| is even and each color appears on at most |X|/2 points, then there
exists a non-crossing properly colored geometric perfect matching on X such that
each edge is an L-line segment.

Corollary 1.13. Let (x1, x2, . . . , xn) be a sequence of multicolored n ≥ 3 points.
For each color j, let Cj be a set of points colored with j in the sequence. Assume
that the both ends x1 and xn have the same color. If |Cj | ≤ ⌈n/2⌉ for every color
j, then there exists an even number p (2 ≤ p ≤ n− 1) such that xp and x1 have
distinct colors and for every color j,

|Cj ∩ {x1, . . . , xp}| ≤
p

2
,

|Cj ∩ {xp+1, . . . , xn}| ≤
⌈
n− p

2

⌉
.

In this paper, we will prove Lemma 1.8, Theorem 1.2, Theorem 1.4, and
Theorem 1.7 in Section 2, 3, 4, and 5, respectively.

Throughout this paper, we will use the following definitions, notations, and
a fact. For two points x and y in the plane, xy denotes the line segment joining
x and y. For a set X of points in the plane, we denote by conv(X) the boundary
of the convex hull of X. We call a point in X ∩ conv(X) a vertex on conv(X).
For a graph G and its vertex v, we denote by degG(v) the degree of v in G.
For positive integers n, a, and b such that n = a + b, we know the fact that
a ≤ ⌈n/2⌉ and b ≤ ⌈n/2⌉ if and only if |a−b| ≤ 1. We often use this fact without
mentioning.

2 Proof of Lemma 1.8

By the symmetry of the colors, we may assume that x1 and xn are red. First,
we claim the lemma holds when B = ∅ or G = ∅, say G = ∅.
Claim 1. If G = ∅ then there exists an even number p (2 ≤ p ≤ n − 1) such
that xp is blue and

|R ∩ {x1, . . . , xp}| = |B ∩ {x1, . . . , xp}| =
p

2
,

|R ∩ {xp+1, . . . , xn}| ≤
⌈
n− p

2

⌉
, |B ∩ {xp+1, . . . , xn}| ≤

⌈
n− p

2

⌉
.



Proof. Define a function f from {1, 2, . . . , n} to the set of integers as

f(i) = |R ∩ {x1, . . . , xi}| − |B ∩ {x1, . . . , xi}|.

Then f(i) increases or decreases by one, and f(1) = |{x1}| − |∅| = 1 and

f(n− 1) = |R ∩ {x1, . . . , xn−1}| − |B ∩ {x1, . . . , xn−1}| = |R \ {xn}| − |B \ {xn}|
= (|R| − 1)− |B| = |R| − 1− (n− |R|) = 2|R| − 1− n

≤ 2
⌈n
2

⌉
− 1− n ≤ (n+ 1)− 1− n = 0.

Hence there exists the smallest number p (2 ≤ p ≤ n − 1) such that f(p) = 0.
Then, f(p − 1) = 1. Thus, xp is a blue point since f(i) decreases when xi is a
blue point. Since f(p) = 0, by the definition of f , we have

|R ∩ {x1, . . . , xp}| = |B ∩ {x1, . . . , xp}| =
p

2
.

Then, p is even and for each C ∈ {R,B},

|C ∩ {xp+1, . . . , xn}| = |C| − |C ∩ {x1, . . . , xp}| ≤
⌈n
2

⌉
− p

2
=

⌈
n− p

2

⌉
.

⊓⊔

Next, by using Claim 1, we will prove the lemma. We use induction on n.
If n = 3 or n = 4 then xi (2 ≤ i ≤ n − 1) are not red since x1, xn ∈ R and
|R| ≤ ⌈n/2⌉ = 2. Thus, xp = x2 is the desired point. For n ≥ 5, we suppose that
the lemma holds for a sequence of n− 2 points.

Case 1. |C| = ⌈n/2⌉ for some C ∈ {R,B,G}.

Set W = C and K = (R ∪ B ∪G) \ C. We recolor all the points of W with
white, and all the points of K with black*2. Then, we have

|W | =
⌈n
2

⌉
, |K| = n− |W | = n−

⌈n
2

⌉
=

⌊n
2

⌋
≤

⌈n
2

⌉
.

Since x1, xn ∈ W or x1, xn ∈ K, by Claim 1, there exists an even number p
(2 ≤ p ≤ n− 1) such that xp and x1 have distinct colors and

|W ∩ {x1, . . . , xp}| = |K ∩ {x1, . . . , xp}| =
p

2
,

|W ∩ {xp+1, . . . , xn}| ≤
⌈
n− p

2

⌉
, |K ∩ {xp+1, . . . , xn}| ≤

⌈
n− p

2

⌉
.

Hence, since each of R,B and G is a subset of W or K, the point xp is the
desired point.

*2 We denote a set of black points by K not by B, because B means a set of blue points
in this paper.



Case 2. |C| ≤ ⌈n/2⌉ − 1 for every C ∈ {R,B,G}.

If x2 is not red, then the point xp = x2 is the desired point because for every
C ∈ {R,B,G},

|C ∩ {x3, . . . , xn}| ≤ |C| ≤
⌈n
2

⌉
− 1 =

⌈
n− 2

2

⌉
=

⌈
n− p

2

⌉
.

Hence we may assume that x2 is red. Then there exists a blue or green point
xt (t ≥ 3), such that x1, . . . , xt−1 are all red. We now consider a sequence

Y = (y1, y2, . . . , yn−2) = (x2, . . . , xt−1, xt+1, . . . , xn),

which is obtained from the original sequence by removing one red point x1 and
one blue or green point xt. Note that the points y1(= x2) and yn−2(= xn) have
the same color, namely red. For every C ∈ {R,B,G}, |C∩Y | ≤ |C| ≤ ⌈n/2⌉−1 =
⌈(n − 2)/2⌉. Thus, by applying the inductive hypothesis to Y , there exists an
even number q (2 ≤ q ≤ n − 3) such that yq is a blue or green point and for
every C ∈ {R,B,G},

|C ∩ {y1, . . . , yq}| ≤
q

2
,

|C ∩ {yq+1, . . . , yn−2}| ≤
⌈
n− 2− q

2

⌉
.

Then yq = xq+2 and t+ 1 ≤ q + 2 since x1, . . . , xt−1 are red, xt /∈ Y , and yq
is not red. Hence, since x1 and xt have distinct colors, for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xq+2}| = |C ∩ {x1, xt, y1, . . . , yq}| ≤
q

2
+ 1 =

q + 2

2
,

|C ∩ {xq+3, . . . , xn}| = |C ∩ {yq+1, . . . , yn−2}| ≤
⌈
n− 2− q

2

⌉
=

⌈
n− (q + 2)

2

⌉
.

Therefore, since q is even, namely q+2 is even, the point xp = xq+2 is the desired
point.

3 Proof of Theorem 1.2 by using Lemma 1.8

We briefly call a non-crossing properly colored geometric perfect matching a
Perfect Matching. Set 2n = |X|. We prove the theorem by induction on n. If
n = 1 then the theorem is true. For n ≥ 2, we suppose that the theorem holds
for 2(n− 1) points.

Suppose that |C| = n for some C ∈ {R,B,G}. Set W = C and K =
(R ∪ B ∪G) \ C. We recolor all the points of W with white, and all the points
of K with black. Then there exists the desired Perfect Matching by applying
Theorem 1.1 to W ∪K.



Hence, we may assume that

|C| ≤ n− 1 for every C ∈ {R,B,G}.

Suppose that some two adjacent vertices u and v on conv(X) have distinct
colors. By our assumption, we have

|C ∩ (X − {u, v})| ≤ |C| ≤ n− 1 for every C ∈ {R,B,G}.

Thus, since |X − {u, v}| = 2(n − 1), we can apply the inductive hypothesis to
X−{u, v} and there exists a Perfect Matching on X−{u, v}. By adding an edge
uv to this matching, we can obtain the desired Perfect Matching.

Therefore, we may assume that all the vertices on conv(X) have the same
color. Let v be a vertex on conv(X). By a suitable rotation of the plane, we may
assume that v is the highest vertex on conv(X), and a and b are the left and the
right vertices on conv(X) adjacent to v, respectively.

We sort all the points of X with respect to their counterclockwise angle from
the ray emanating from v and passing through a, and denote the sorted sequence
by (x1, x2, . . . , x2n) so that x1 = v, x2 = a, and x2n = b. Since the two end-points
x1 and x2n have the same color, by Lemma 1.8, there exists an even number p
(2 ≤ p ≤ 2n− 1) such that for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤
p

2
, |C ∩ {xp+1, . . . , x2n}| ≤

⌈
2n− p

2

⌉
.

This implies that the line passing through v and xp partitions X \ {v, xp}
into Left = {x2(= a), x3, . . . , xp−1} and Right = {xp+1, . . . , x2n−1, x2n(= b)} as
shown in Fig. 5 so that a ∈ Left, b ∈ Right, |Left∪{v, xp}| = p, |Right| = 2n−p,
and for every C ∈ {R,B,G},

|C ∩ (Left ∪ {v, xp})| ≤
p

2
, |C ∩Right| ≤

⌈
2n− p

2

⌉
.

Since p is even, by applying the inductive hypothesis to each of Left∪{v, xp}
and Right, we can obtain the desired Perfect Matching.

xp

x1 = v

x3

x4

x5

x6

x2 = a
x2n = b

xp

x1 = v

Fig. 5. A balanced partition and the desired Perfect Matching.



4 Proof of Theorem 1.4 by using Lemma 1.8

We first prove the following proposition, which is a stronger version of Theorem
1.3. Our proof of this proposition is also another proof of Theorem 1.3.

Proposition 4.1. Let R and B be sets of red and blue points in the plane,
respectively. Assume that no three points of X = R∪B are collinear. Let v be a
vertex on conv(X). If either of the following conditions (i), (ii), or (iii) holds:

(i) |B| = 1, 1 ≤ |R| ≤ 3, and v ∈ R,
(ii) 2 ≤ |B|, |R| = |B|+ 2, and v ∈ R,
(iii) 2 ≤ |B| ≤ |R| ≤ |B|+ 1,

then there exists a non-crossing alternating geometric spanning 3-tree T on X
such that degT (v) = 1.

Proof. We briefly call an alternating geometric spanning 3-tree a Spanning 3-
Tree. If Condition (i) holds then the starK1,|R| whose center is blue is the desired
Spanning 3-Tree.

Hence, we may assume that (ii) or (iii) holds. Set n = |X|. We prove the
proposition by induction on n. By the assumption of the proposition, n ≥ 4. If
n = 4 then |R| = |B| = 2. Thus, there exists a non-crossing alternating geometric
matching M = {va, bc} where a and b have distinct colors. Then, the path vabc
is the desired Spanning 3-Tree.

For n ≥ 5, we suppose that the proposition holds for at most n−1 points. The
outline of the proof is that we will find a Spanning 3-Tree on X − v and connect
v and a point with degree at most 2 in the tree. We consider the following two
cases depending on the colors of the two neighbors of v on conv(X).

Case 1. v and some neighbor vertex u of v on conv(X) have distinct colors.

Subcase 1.1. Condition (ii) holds.

Since v ∈ R and |R| = |B| + 2, X − v = (R − v) ∪ B and |R − v| = |B| + 1.
Since 2 ≤ |B|, we have 2 ≤ |B| ≤ |R − v| ≤ |B|+ 1. Thus, R − v and B satisfy
Condition (iii). Hence, since u is a vertex on conv(X − v), we can apply the
inductive hypothesis to R − v, B, and u. Then there exists a Spanning 3-Tree
T1 on (R− v)∪B such that degT1

(u) = 1. Therefore, T = T1 + vu is the desired
Spanning 3-Tree on X.

Subcase 1.2. Condition (iii) holds and v ∈ R.

3 ≤ |R| since n ≥ 5. Thus, 2 ≤ |R| − 1 ≤ |R − v|. By Condition (iii),
|R − v| = |R| − 1 ≤ |B| ≤ |R| = |R − v| + 1. Hence, we have 2 ≤ |R − v| ≤
|B| ≤ |R− v|+ 1. Thus, R− v and B satisfy Condition (iii). Hence, since u is a
vertex on conv(X − v), we can apply the inductive hypothesis to R− v, B, and
u. Then there exists a Spanning 3-Tree T1 on (R−v)∪B such that degT1

(u) = 1.
Therefore, T = T1 + vu is the desired Spanning 3-Tree on X.



Subcase 1.3. Condition (iii) holds and v ∈ B.

If |B| = 2 then 2 ≤ |R| ≤ 3 and |B − v| = 1. Thus, since u ∈ R, R and B − v
satisfy Condition (i). If 3 ≤ |B| then 2 ≤ |B − v|. By Condition (iii), we have
2 ≤ |B− v| ≤ |B| ≤ |R| ≤ |B|+1 = |B− v|+2. Thus, since u ∈ R, R and B− v
satisfy Condition (ii) or (iii). Hence, since u is a vertex on conv(X − v), we can
apply the inductive hypothesis to R, B−v, and u. Then there exists a Spanning
3-Tree T1 on R ∪ (B − v) such that degT1

(u) = 1. Therefore, T = T1 + vu is the
desired Spanning 3-Tree on X.

Case 2. v and its two neighbor vertices on conv(X) have the same color.

By a suitable rotation of the plane, we may assume that v is the highest
vertex on conv(X), and a and b are the left and the right vertices on conv(X)
adjacent to v, respectively.

Subcase 2.1. v, a, b ∈ R.

We sort all the points of X−v with respect to their counterclockwise angle from
the ray emanating from v and passing through a, and denote the sorted sequence
by (x1, x2, . . . , xn−1) so that x1 = a and xn−1 = b. Since 2 ≤ |B| ≤ |R| ≤ |B|+2,
we have 1 ≤ |B| − 1 ≤ |R − v| ≤ |B| + 1, which implies ||R − v| − |B|| ≤ 1.
Thus, in the sequence, each color appears on at most ⌈(n − 1)/2⌉ points. Since
the two end-points x1 and xn−1 have the same color, namely red, by Lemma 1.8,
there exists an even number p (2 ≤ p ≤ n − 2) such that xp ∈ B and for every
C ∈ {R,B},

|C ∩ {x1, . . . , xp}| ≤
p

2
, |C ∩ {xp+1, . . . , xn−1}| ≤

⌈
n− 1− p

2

⌉
.

This implies that the line passing through v and xp partitions X \{v, xp} into
Left = {x1(= a), x2, . . . , xp−1} and Right = {xp+1, . . . , xn−2, xn−1(= b)} as
shown in Fig. 6 so that a ∈ Left, b ∈ Right, |Left∪{xp}| = p, |Right| = n−1−p,
and for every C ∈ {R,B},

|C ∩ (Left ∪ {xp})| ≤
p

2
, |C ∩Right| ≤

⌈
n− 1− p

2

⌉
. (1)

Here, we will find two Spanning 3-Trees T1 and T2 on Left ∪ {xp} and
Right ∪ {xp} such that degT1

(xp) = 1 and degT2
(xp) = 1, respectively, and

connect the red point v to the blue point xp.
First, set W = R ∩ Left and K = (B ∩ Left) ∪ {xp}. Since p is even,

|K| = |W |. Hence, since xp ∈ K is a vertex on conv(K ∪W ), we can apply the
inductive hypothesis to K, W , and xp. Then there exists a Spanning 3-Tree T1

on Left ∪ {xp} such that degT1
(xp) = 1.

Next, set W = R ∩ Right and K = (B ∩ Right) ∪ {xp}. By the inequality
(1), ||W | − (|K| − 1)| = ||R ∩ Right| − |B ∩ Right|| ≤ 1. Thus, we have −1 ≤
|W | − (|K| − 1) ≤ 1, that is, 0 ≤ |K| − |W | ≤ 2. Then, either of the following
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Fig. 6. A balanced partition and the desired Spanning 3-tree.

conditions (i), (ii), or (iii) holds: (i) |W | = 1, 1 ≤ |K| ≤ 3, and xp ∈ K, (ii)
2 ≤ |W |, |K| = |W | + 2, and xp ∈ K, (iii) 2 ≤ |W | ≤ |K| ≤ |W | + 1. Hence,
since xp ∈ K is a vertex on conv(K∪W ), we can apply the inductive hypothesis
to K, W , and xp. Then there exists a Spanning 3-Tree T2 on Right∪ {xp} such
that degT2

(xp) = 1.
Consequently, T = T1 + T2 + vxp is the desired Spanning 3-tree on X.

Subcase 2.2. v, a, b ∈ B.

We sort all the points of X with respect to their counterclockwise angle from
the ray emanating from v and passing through a, and denote the sorted sequence
by (x1, x2, . . . , xn) so that x1 = v, x2 = a, and xn = b. Note that in this subcase
R and B satisfy Condition (iii) since v ∈ B, that is, 2 ≤ |B| ≤ |R| ≤ |B| + 1.
Thus, in the sequence, each color appears on at most ⌈n/2⌉ points. Since the
two end-points x1 and xn have the same color, namely blue, by Lemma 1.8,
there exists an even number p (2 ≤ p ≤ n − 1) such that xp ∈ R and for every
C ∈ {R,B},

|C ∩ {x1, . . . , xp}| ≤
p

2
, |C ∩ {xp+1, . . . , xn}| ≤

⌈
n− p

2

⌉
.

This implies that the line passing through v and xp partitions X \ {v, xp}
into Left = {x2(= a), x3, . . . , xp−1} and Right = {xp+1, . . . , xn−1, xn(= b)}
as shown in Fig. 7 so that a ∈ Left, b ∈ Right, |Left ∪ {x1(= v), xp}| = p,
|Right| = n− p, and for every C ∈ {R,B},

|C ∩ (Left ∪ {v, xp})| ≤
p

2
, |C ∩Right| ≤

⌈
n− p

2

⌉
. (2)

Here, we will find two Spanning 3-Trees T1 and T2 on Left ∪ {xp} and
Right ∪ {xp} such that degT1

(xp) = 1 and degT2
(xp) = 1, respectively, and

connect the blue point v to the red point xp.
First, setW = (R∩Left)∪{xp} andK = B∩Left. Since Left∪{x1(= v), xp}

has even points and x1(= v) is blue, |W | = |K| + 1. Hence, since xp ∈ W is a
vertex on conv(W ∪K), we can apply the inductive hypothesis to W , K, and xp.
Then there exists a Spanning 3-Tree T1 on Left∪{xp} such that degT1

(xp) = 1.



xp

x3

x4

x5

x6

x2 = a
xn = b

xp

T1

T2

x1 = v x1 = v

Fig. 7. A balanced partition and the desired Spanning 3-tree.

Next, set W = (R ∩ Right) ∪ {xp} and K = B ∩ Right. By the inequality
(2), |(|W | − 1) − |K|| = ||R ∩ Right| − |B ∩ Right|| ≤ 1. Thus, we have −1 ≤
(|W | − 1) − |K| ≤ 1, that is, 0 ≤ |W | − |K| ≤ 2. Then, either of the following
conditions (i), (ii), or (iii) holds: (i) |K| = 1, 1 ≤ |W | ≤ 3, and xp ∈ W , (ii)
2 ≤ |K|, |W | = |K|+2, and xp ∈ W , (iii) 2 ≤ |K| ≤ |W | ≤ |K|+1. Hence, since
xp ∈ W is a vertex on conv(W ∪K), we can apply the inductive hypothesis to
W , K, and xp. Then there exists a Spanning 3-Tree T2 on Right ∪ {xp} such
that degT2

(xp) = 1.
Consequently, T = T1 + T2 + vxp is the desired Spanning 3-tree on X. ⊓⊔

Now, we will prove Theorem 1.4. If |X| ≤ 3 then the theorem is true. Thus,
we may assume that |X| ≥ 4. Instead of Theorem 1.4 with |X| ≥ 4, we prove
the following stronger Proposition 4.2 by using Lemma 1.8 and Proposition 4.1.

Proposition 4.2. Let R, B, G be sets of red, blue, and green points in the plane,
respectively. Assume that no three points of X = R∪B∪G are collinear. |X| ≥ 4.
Let v be a vertex on conv(X). If each color appears on at most ⌈|X|/2⌉ points,
then there exists a non-crossing properly colored geometric spanning 3-tree T on
X such that degT (v) = 1.

Proof. Set n = |X|. We briefly call a properly colored geometric spanning 3-tree
a Spanning 3-Tree. If there are exactly two colors then the proposition holds by
Proposition 4.1. Thus, we may assume that R ̸= ∅, B ̸= ∅, G ̸= ∅.

Suppose that the number of points colored with some color is exactly ⌈n/2⌉,
say |R| = ⌈n/2⌉. Then |B ∪ G| = n − |R| = ⌊n/2⌋ ≤ ⌈n/2⌉. Set W = R and
K = B ∪ G. Then, 2 ≤ |K| ≤ |W | ≤ |K| + 1 since n ≥ 4. Thus, we can apply
Proposition 4.1 to W , K, and v. Then there exists a Spanning 3-Tree T with
degT (v) = 1 on X = W ∪K, which is the desired tree. Therefore, we have the
following claim.

Claim 1. We may assume that each color appears on at most ⌈n/2⌉− 1 points.

We prove Proposition 4.2 by induction on n. If n = 4 then we may assume
that |R| = 2, |B| = 1, and |G| = 1 by the symmetry of the colors. Set W = R
and K = B ∪ G. Then, 2 ≤ |W | = |K|. Thus, we can apply Proposition 4.1 to



W , K, and v. Then there exists a Spanning 3-Tree T on X = W ∪K such that
degT (v) = 1, which is the desired tree.

For n ≥ 5, we suppose that the proposition holds for at most n−1 points. The
outline of the proof is that we will find a Spanning 3-Tree on X − v and connect
v and a point with degree at most 2 in the tree. We consider the following two
cases depending on the colors of the two neighbors of v on conv(X). By the
symmetry of the colors, we may assume that v ∈ R.

Case 1. v and some neighbor vertex u of v on conv(X) have distinct colors,
namely, u /∈ R.

|X−v| ≥ 4. By Claim 1, for every C ∈ {R,B,G}, |C−v| ≤ |C| ≤ ⌈n/2⌉−1 ≤
⌈|X − v|/2⌉ points. Hence, since u is a vertex on conv(X − v), we can apply the
inductive hypothesis to X − v and u. Then there exists a Spanning 3-Tree T1 on
X − v such that degT1

(u) = 1. Therefore, T = T1 + vu is the desired Spanning
3-Tree on X.

Case 2. v and its two neighbor vertices on conv(X) have the same color.

By a suitable rotation of the plane, we may assume that v is the highest
vertex on conv(X), and a and b are the left and the right vertices on conv(X)
adjacent to v, respectively. We sort all the points of X − v with respect to their
counterclockwise angle from the ray emanating from v and passing through
a, and denote the sorted sequence by (x1, x2, . . . , xn−1) so that x1 = a and
xn−1 = b.

By Claim 1, for every C ∈ {R,B,G}, |C−v| ≤ |C| ≤ ⌈n/2⌉−1 ≤ ⌈(n−1)/2⌉
points. Thus, in the sequence, each color appears on at most ⌈|X − v|/2⌉ points.
The two end-points x1 and xn−1 have the same color, namely red. Hence, by
Lemma 1.8, there exists an even number p (2 ≤ p ≤ n − 2) such that xp /∈ R
and for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤
p

2
, |C ∩ {xp+1, . . . , xn−1}| ≤

⌈
n− 1− p

2

⌉
.

This implies that the line passing through v and xp partitions X \{v, xp} into
Left = {x1(= a), x2, . . . , xp−1} and Right = {xp+1, . . . , xn−2, xn−1(= b)} as
shown in Fig. 8 so that a ∈ Left, b ∈ Right, |Left∪{xp}| = p, |Right| = n−1−p,
and for every C ∈ {R,B,G},

|C ∩ (Left ∪ {xp})| ≤
p

2
, |C ∩Right| ≤

⌈
n− 1− p

2

⌉
. (3)

Here, we will find two Spanning 3-Trees T1 and T2 on Left ∪ {xp} and
Right ∪ {xp} such that degT1

(xp) = 1 and degT2
(xp) = 1, respectively, and

connect the red point v to the non-red point xp. By the symmetry of B and G,
we may assume that xp ∈ B.

First, we will find a Spanning 3-Tree T1 on Left∪{xp} such that degT1
(xp) =

1. If |Left∪{xp}| = 2 then the path xpa is the desired Spanning 3-Tree T1. Thus,
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Fig. 8. A balanced partition and the desired Spanning 3-tree.

since p is even, we suppose that |Left∪{xp}| ≥ 4. Then, since xp is a vertex on
conv(Left∪{xp}), we can apply the inductive hypothesis to Left∪{xp} and xp.
Then there exists a Spanning 3-Tree T1 on Left∪{xp} such that degT1

(xp) = 1.
Next, we will find a Spanning 3-Tree T2 onRight∪{xp} such that degT2

(xp) =
1. If |Right ∪ {xp}| = 2 then the path xpb is the desired Spanning 3-Tree T2. If
|Right ∪ {xp}| = 3 then n − 1 − p = |Right| = 2. Thus, by the inequality (3),
|C ∩ Right| ≤ 1. Thus implies that Right ∪ {xp} has one red point b, one blue
point xp, and one blue or green point g. Hence, the path xpbg is the desired
Spanning 3-Tree T2.

Thus, we suppose that |Right ∪ {xp}| ≥ 4. If for every C ∈ {R,B,G},
|C∩(Right∪{xp})| ≤ ⌈(n−p)/2⌉, then, since xp is a vertex on conv(Right∪{xp}),
we can apply the inductive hypothesis to Right∪{xp} and xp. Then there exists
a Spanning 3-Tree T2 on Right ∪ {xp} such that degT2

(xp) = 1.
Hence, we suppose that for some C ∈ {R,B,G}, |C ∩ (Right ∪ {xp})| >

⌈(n− p)/2⌉. Since xp is blue, by the inequality (3), we have⌈
n− p

2

⌉
< |B ∩ (Right ∪ {xp})| ≤

⌈
n− 1− p

2

⌉
+ 1 =

⌈
n− p+ 1

2

⌉
.

This implies that n− p is even and |B ∩ (Right∪ {xp})| = (n− p)/2+ 1. Set
W = B ∩ (Right ∪ {xp}) and K = (Right ∪ {xp}) \W . Then,

|K| = |Right ∪ {xp}| − |W | = (n− 1− p+ 1)− (
n− p

2
+ 1) =

n− p

2
− 1

Thus, |W | = |K|+ 2. Hence, since xp ∈ W is a vertex on conv(W ∪K), we can
apply Proposition 4.1 to W , K, and xp. Then there exists a Spanning 3-Tree T2

on Right ∪ {xp} such that degT2
(xp) = 1.

Consequently, T = T1 + T2 + vxp is the desired Spanning 3-tree on X. ⊓⊔

5 Proof of Theorem 1.7 by using Lemma 1.8

We can prove Theorem 1.7 in the same way as the proof of Theorem 1.2 in Section
3. We briefly call a non-crossing properly colored geometric perfect matching
(such that each edge is an L-line segment) a Perfect Matching. Set 2n = |X|.



We prove the theorem by induction on n. If n = 1 then the theorem is true. For
n ≥ 2, we suppose that the theorem holds for 2(n− 1) points.

Suppose that |C| = n for some C ∈ {R,B,G}. Set W = C and K =
(R ∪ B ∪G) \ C. We recolor all the points of W with white, and all the points
of K with black. Then there exists the desired Perfect Matching by applying
Theorem 1.6 to W ∪K.

Hence, we may assume that

|C| ≤ n− 1 for every C ∈ {R,B,G}.

The rectangular hull of X is the smallest closed rectangular enclosing X. We
denote by rect(X) the boundary of the rectangular hull of X. We call a point in
X ∩ rect(X) a vertex on rect(X).

Suppose that some two adjacent vertices u and v on rect(X) have distinct
colors. By our assumption, we have

|C ∩ (X − {u, v})| ≤ |C| ≤ n− 1 for every C ∈ {R,B,G}.

Thus, since |X − {u, v}| = 2(n − 1), we can apply the inductive hypothesis to
X − {u, v} and there exists a Perfect Matching on X − {u, v}. By adding an L-
line segment uv on rect(X) to this matching, we can obtain the desired Perfect
Matching.

Therefore, we may assume that all the vertices on rect(X) have the same
color. Let a and b be the left and the right vertices on rect(X), respectively. We
sort all the points of X by their horizontal coordinate, and denote the sorted
sequence by (x1, x2, . . . , x2n) so that x1 = a and x2n = b. Since the two end-
points x1 and x2n have the same color, by Lemma 1.8, there exists an even
number p (2 ≤ p ≤ 2n− 1) such that for every C ∈ {R,B,G},

|C ∩ {x1, . . . , xp}| ≤
p

2
, |C ∩ {xp+1, . . . , x2n}| ≤

⌈
2n− p

2

⌉
.

This implies that the vertical line passing through xp partitions X \ {xp}
into Left = {x1(= a), x2, . . . , xp−1} and Right = {xp+1, . . . , x2n−1, x2n(= b)}
so that a ∈ Left, b ∈ Right, |Left ∪ {xp}| = p, |Right| = 2n− p, and for every
C ∈ {R,B,G},

|C ∩ (Left ∪ {xp})| ≤
p

2
, |C ∩Right| ≤

⌈
2n− p

2

⌉
.

Since p is even, by applying the inductive hypothesis to each of Left ∪ {xp}
and Right, we can obtain the desired Perfect Matching.
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